Answered

A 24.6 g marble sliding to the right at 62.0 cm/s overtakes and collides elastically with a 12.3 g marble moving in the same direction at 15.5 cm/s. After the collision, the 12.3 g marble moves to the right at 77.5 cm/s. Find the velocity of the 24.6 g marble after the collision. cm/s

Answer :

Answer:

Velocity of the 24.6 g marble is 31 cm/s.

Step-by-step explanation:

Given:

Marble 1:

Mass of the marble [tex](m_1)[/tex] = 12.3 gm

Velocity of [tex]m_1[/tex] before collision [tex]v_1_i[/tex] = 15.5 cm/s

Velocity of [tex]m_1[/tex] after collision [tex]v_1_f[/tex] = 77.5 cm/s

Marble 2:

Mass of the marble [tex](m_2)[/tex] = 24.6 gm

Velocity of [tex]m_2[/tex] before collision [tex]v_2_i[/tex] = 62 cm/s

Velocity of [tex]m_2[/tex] after collision [tex]v_2_f[/tex] = ?

From the law of conservation of momentum, we know that momentum before equals the momentum after :

So,

⇒ [tex]P(i)=P(f)[/tex]

⇒ [tex](m_1\times v_1_i )+(m_2\times v_2_i) =(m_1\times v_1_f)+(m_2\times v_2_f)[/tex]

⇒ Plugging the values.

⇒ [tex](12.3\times 15.5) +(24.6\times 62)=(12.3\times 77.5)+(24.6\times v_2_f)[/tex]

⇒ [tex]190.65+1525.2=953.25+24.6\times v_2_f[/tex]

⇒ [tex]1715.85=953.25+24.6\times v_2_f[/tex]

⇒ [tex]1715.85-953.25=24.6\times v_2_f[/tex] ...subtracting both sides 953.25

⇒ [tex]762.6=24.6\times v_2_f[/tex]

⇒ [tex]\frac{762.6}{24.6}\ =v_2_f[/tex] ...dividing both sides with 24.6

⇒ [tex]31=v_2_f[/tex]

⇒ [tex]v_2_f =31[/tex] cm/s

The velocity of the 24.6 g marble after the collision is 31 cm/s and it will move opposite to of the 12.3 g marbles that is towards left.

Other Questions