Answer :

The area of the triangle LMN is 20.3 square units

Explanation:

Given that the measurements of the sides of the triangle are [tex]LM=10[/tex] , [tex]LN=5[/tex] and [tex]m\angle L=54^{\circ}[/tex]

We need to determine the area of the triangle.

Area of the triangle:

The area of the triangle can be determined using the formula,

[tex]\text {Area}=\frac{1}{2} mn \sin L[/tex]

Substituting the values, [tex]m=5[/tex], [tex]n=10[/tex] and [tex]m\angle L=54^{\circ}[/tex], we get,

[tex]\text {Area}=\frac{1}{2} (5)(10) \sin 54^{\circ}[/tex]

Simplifying the terms, we have,

[tex]\text {Area}=\frac{1}{2} (5)(10) (0.81)[/tex]

Multiplying the values, we get,

[tex]\text {Area}=\frac{40.5}{2}[/tex]

Dividing, we get,

[tex]Area=20.25[/tex]

Rounding off to the nearest tenth, we get,

[tex]\text {Area}=20.3[/tex]

Thus, the area of the triangle LMN is 20.3 square units.

Other Questions