Answer :
Answer:
$6600
Explanation:
Given: Selling price= $250 per unit
Variable cost= $181 per unit.
Fixed cost= $430000.
Expected Profit= $25400.
Let´s assume the number of units sold be "x".
Revenue (R) = [tex]250\times x= \$250x[/tex]
Cost of product (C)= [tex]\$ 181\times x+ \$ 430000[/tex]
∴ Cost of product (C)= [tex]\$ 181x+ \$ 430000[/tex]
Now, finding the number of unit sold.
Forming an equation for profit.
We know, Profit= [tex]Revenue-cost[/tex]
⇒ [tex]\$ 25400= 250x- (181x+430000)[/tex]
Opening parenthesis.
⇒ [tex]25400= 250x- 181x- 430000[/tex]
⇒ [tex]25400= 69x- 430000[/tex]
Adding both side by 430000
⇒ [tex]455400= 69x[/tex]
Dividing both side by 69
⇒ [tex]x= \frac{455400}{69}[/tex]
∴ [tex]x= 6600 units[/tex]
Hence, total number of units sold to earn $25400 is 6600 units.