Answered

A product sells for $250 per unit, and its variable costs per unit are $181. The fixed costs are $430,000. If the firm wants to earn $25,400 pretax income, how many units must be sold

Answer :

Answer:

$6600

Explanation:

Given: Selling price= $250 per unit

          Variable cost= $181 per unit.

           Fixed cost= $430000.

           Expected Profit= $25400.

Let´s assume the number of units sold be "x".

Revenue (R) = [tex]250\times x= \$250x[/tex]

Cost of product (C)= [tex]\$ 181\times x+ \$ 430000[/tex]

Cost of product (C)= [tex]\$ 181x+ \$ 430000[/tex]

Now, finding the number of unit sold.

Forming an equation for profit.

We know, Profit= [tex]Revenue-cost[/tex]

⇒  [tex]\$ 25400= 250x- (181x+430000)[/tex]

Opening parenthesis.

⇒ [tex]25400= 250x- 181x- 430000[/tex]

⇒ [tex]25400= 69x- 430000[/tex]

Adding both side by 430000

⇒ [tex]455400= 69x[/tex]

Dividing both side by 69

⇒ [tex]x= \frac{455400}{69}[/tex]

∴ [tex]x= 6600 units[/tex]

Hence, total number of units sold to earn $25400 is 6600 units.

     

           

Other Questions