Answer :

Answer:

0.500 is the required probability.

Step-by-step explanation:

We are given the following information in the question:

Mean, μ = 12,749

Standard Deviation, σ = 1.5

Let X be the distribution of sample means.

Formula:

[tex]z_{score} = \displaystyle\frac{x-\mu}{\sigma}[/tex]

Standard error due to sampling =

[tex]=\dfrac{\sigma}{\sqrt{n}} = \dfrac{1.5}{\sqrt{37}} = 0.2465[/tex]

We have to evaluate:

P(x less than 12,749 or greater than 12,752)

[tex]= 1 - P(12749\leq x \leq 12752)[/tex]

Now,

[tex]P(12749\leq x \leq 12752)\\\\ = P(\displaystyle\frac{12749 - 12749}{0.2465} \leq z \leq \displaystyle\frac{12752-12749}{0.2465}) \\\\= P(0 \leq z \leq 12.17)\\\\= P(z \leq 12.17) - P(z < 0)\\= 1.000 - 0.500 = 0.500[/tex]

P(x less than 12,749 or greater than 12,752)

[tex]= 1 - P(12749\leq x \leq 12752)\\=1-0.500\\=0.500[/tex]

Thus, 0.500 is the required probability.

Other Questions