Answered

Write the standard equation of a circle that passes through (−2, 10) with center (−2, 6).

A: (x + 2)2 + (y – 10)2 = 8

B: (x + 2)2 + (y – 6)2 = 16

C: (x + 2)2 + (y – 6)2 = 4

D: (x – 2)2 + (y + 10)2 = 16

Answer :

Answer:

The answer to your question is the letter B.

Step-by-step explanation:

Data

Point = (-2, 10)

Center = (-2, 6)

Process

1.- Find the radius using the distance between two points

dCP = [tex]\sqrt{(x2 - x1)^{2}+ (y2 - y1)^{2}}[/tex]

-Substitution

dCP = [tex]\sqrt{(-2 + 2)^{2}+ (6 - 10)^{2}}[/tex]

dCP = [tex]\sqrt{(0)^{2}+ (-4)^{2}}[/tex]

dCP = [tex]\sqrt{16}[/tex]

dCP = 4

2.- Write the equation of the circle

Standard equation     (x - h)² + (y - k)² = r²

h = -2

k = 6

r = 4

                                       (x + 2)² + (y - 6)² = 4²

Equation                        (x + 2)² + (y - 6)² = 16

The answer you’re looking for is B

Other Questions