Answer :
Answer with Explanation:
We are given that
Resistance,R=130 ohm
Potential difference, V=30 V
Capacitor,C=2.1pF=[tex]2.1\times 10^{-12} F[/tex]
[tex]1pF=10^{-12} F[/tex]
[tex]d=5.0 mm=5\times 10^{-3} m[/tex]
[tex] 1mm=10^{-3} m[/tex]
a.Maximum flux
[tex]\phi=EA=\frac{V}{d}\times \frac{Cd}\epsilon_0}=\frac{CV}{\epsilon_0}[/tex]
[tex]\epsilon_0=8.85\times 10^{-12}[/tex]
[tex]\phi=\frac{2.1\times 10^{-12}\times 30}{8.85\times 10^{-12}}=7.12Vm[/tex]
b.Maximum displacement current,[tex]I=\frac{V}{R}=\frac{30}{130}=0.23 A[/tex]
c.We have to find electric flux at t=0.5 ns
[tex]t=0.5ns=0.5\times 10^{-9} s[/tex]
[tex]1ns=10^{-9}s[/tex]
[tex]q=CV(1-e^{-\frac{t}{RC}})[/tex]
[tex]q=30\times 2.1\times 10^{-12}(1-e^{-\frac{0.5\times 10^{-9}}{130\times 2.1\times 10^{-9}})[/tex]
[tex]q=52.9\times 10^{-12} C[/tex]
[tex]\phi=\frac{q}{\epsilon_0}=\frac{52.9\times 10^{-12}}{8.85\times 10^{-12}}=5.98Vm[/tex]
d.Displacement current at t=0.5ns
[tex]I=(\frac{V}{R})e^{-\frac{t}{RC}}=\frac{30}{130}e^{-\frac{0.5\times 10^{-9}}{130\times 2.1\times 10^{-12}}}[/tex]
[tex]I=0.037 A[/tex]
A) The max electric flux through the capacitor after switch is closed : 7.12 Vm
B) The max displacement current after switch is closed : 0.23 A
C) Electric flux at t = 0.50 ns : 5.98 Vm
D) Displacement current at t = 0.50 ns : 0.037 A
Given data :
Resistance of resistor = 130 Ω
Battery voltage ( P.D ) = 30.0 V
capacitance ( C ) = 2.10 * 10⁻¹²
Distance between plates = 5 * 10⁻³ m
A) Determine the max electric flux After the switch is closed
max electric flux ( ∅ ) = [tex]\frac{CV }{e_{0} }[/tex] ----- ( 1 )
where : C = 2.10 * 10⁻¹² , V = 30 v , [tex]e_{0}[/tex] = 8.85 * 10⁻¹²
Insert values into equation ( 1 )
∴ max electric flux = 7.12 V/m
B) Determine the maximum displacement current
I = V / R
V = 30 v , R = 130 Ω
∴ I = 30 / 130 = 0.23 A
C) Determine the electric flux at t = 0.50 ns
t = 0.50 ns = 0.5 * 10⁻⁹ s
electric flux ( ∅ ) = [tex]\frac{q}{e_{0} }[/tex] ------ ( 2 )
where : q = CV * ( 1 - [tex]e^{-\frac{t}{RC} }[/tex] ) = 52.9 * 10⁻¹² C
∴ electric flux ( ∅ ) at t = 0.5 ns = ( 52.9 * 10⁻¹² ) / ( 8.85 * 10⁻¹² )
= 5.98 Vm
D) Determine the displacement current at t = 0.5 ns
Applying the equation below
I = [tex](\frac{V}{R}) e^{-\frac{t}{RC} }[/tex]
= ( 30 / 130 ) * [tex]e^{-\frac{0.5*10^{-9} }{130*2.1*10^{-12} } }[/tex]
= 0.037 A
Hence we can conclude that the maximum displacement current and the electric flux at different times are as listed in the answers above
Learn more about displacement current : https://brainly.com/question/15413656