Answer :
Answer:
[tex]\large\boxed{\text{0.512 V}}[/tex]
Explanation:
We must use the Nernst equation
[tex]E = E^{\circ} - \dfrac{RT}{zF}lnQ[/tex]
The equation for the cell reaction is is
2Cl⁻(0.384 mol·L⁻¹) + 2Co³⁺(0.324 mol·L⁻¹) ⇌ Cl₂(5.80 atm) + 2Co²⁺(0.158 mol/L)
Data:
E° = 0.483 V
R = 8.314 J·K⁻¹mol⁻¹
T = 25 °C
n = 2
F = 96 485 C/mol
Calculation:
T = 25 + 273.15 = 298.15 K
[tex]Q = \dfrac{\text{[Cl}^{-}]^{2}[\text{Co}^{3+}]^{2}}{p_{\text{Cl}_{2}}^{2}\text{[Co}^{3+}]^{2}} = \dfrac{0.384^{2} \times 0.324^{2}}{5.80 \times 0.158^{2}} =0.1069\\\\E = 0.483 - \left (\dfrac{8.314 \times 298.15 }{2 \times 96485}\right ) \ln(0.1069)\\\\=0.483 -0.01285 \times (-2.236) = 0.483 + 0.02872 = \textbf{0.512 V}\\\text{The cell potential is } \large\boxed{\textbf{0.512 V}}[/tex]