Answered

A chemist titrates 160.0 mL of a 0.3065 M cyanic acid (HCNO) solution with 0.4994 M NaOH solution at 25 °C. Calculate the pH at equivalence. The pK of cyanic acid is 3.46 Round your answer to 2 decimal places.

Answer :

Answer: The pH at equivalence for the given solution is 8.37.

Explanation:

We know that,

     [tex]pK_{a} = -log K_{a}[/tex]

            3.46 = [tex]-log K_{a}[/tex]  

      [tex]K_{a} = 3.467 \times 10^{-4}[/tex]

Now, we will calculate the volume of NaOH required to reach the equivalence point as follows.

  [tex]M_{(HCNO)} \times V_{(HCNO)} = M_{(NaOH)} \times V_{(NaOH)}[/tex]

     [tex]0.3065 M \times 160.0 mL = 0.4994M \times V_{(NaOH)}[/tex]

      [tex]V_{(NaOH)}[/tex] = 98.1978 mL

The given data is as follows.

   M(HCNO) = 0.3065 M

    V(HCNO) = 160 mL

    M(NaOH) = 0.4994 M

    V(NaOH) = 98.1978 mL

So, moles of HCNO will be calculated as follows.

     mol(HCNO) = [tex]M(HCNO) \times V(HCNO)[/tex]

      mol(HCNO) = [tex]0.3065 M \times 160 mL[/tex]

                         = 49.04 mmol

Now, the moles of NAOh will be calculated as follows.

     mol(NaOH) = [tex]M(NaOH) \times V(NaOH)[/tex]

       mol(NaOH) = [tex]0.4994 M \times 98.1978 mL[/tex]

                         = 49.04 mmol

This means that, 49.04 mmol of both HCNO and NaOH will react to form [tex]CNO^{-}[/tex] and [tex]H_{2}O[/tex].

Here, [tex]CNO^{-}[/tex] is strong base . So,

 [tex]CNO^{-}[/tex] formed = 49.04 mmol

Total volume of the solution is as follows.

      Volume of Solution = 160 + 98.1978 = 258.1978 mL

And,

     [tex]K_{b}[/tex] of [tex]CNO^{-}[/tex] = [tex]\frac{K_{w}}{K_{a}}[/tex]

                   = [tex]\frac{1 \times 10^{-14}}{3.467 \times 10^{-4}}[/tex]

                   = [tex]2.884 \times 10^{-11}[/tex]

The concentration of [tex]CNO^{-}[/tex] is as follows.

    c = [tex]\frac{49.04 mmol}{258.1978 mL}[/tex]

       = 0.1899M

Also,

  [tex]CNO^{-} + H_{2}O \rightarrow HCNO + OH^{-}[/tex]

Initial: 0.1899                             0         0

Equilibm:0.1899 - x                    x           x

      [tex]K_{b} = \frac{[HCNO][OH^{-}]}{[CNO^{-}]}[/tex]

            [tex]K_{b} = \frac{x \times x}{(c - x)}[/tex]

We assume that x can be ignored as compared to c . Hence, above formula can be rewritten as follows.

        [tex]K_{b} = \frac{x \times x}{c}[/tex]

so,    x = [tex]\sqrt (K_{b} \times c)[/tex]

        x = [tex]\sqrt ((2.884 \times 10^{-11}) \times 0.1899)[/tex]

         = [tex]2.34 \times 10^{-6}[/tex]

Here, c is much greater than x, this means that our assumption is correct .

so,       x = [tex]2.34 \times 10^{-6}[/tex] M

        [tex][OH^{-}] = x = 2.34 \times 10^{-6}[/tex] M

As,

      pOH = [tex]-log [OH^{-}][/tex]

                = [tex]-log (2.34 \times 10^{-6})[/tex]

                = 5.6307

Also, pH = 14 - pOH

               = 14 - 5.6307

               = 8.3693

or,           = 8.37 (approx)

Thus, we can conclude that the pH at equivalence for the given solution is 8.37.

Other Questions