Answer :

Answer:

[tex]m'(4)=2.5[/tex]

Explanation:

The given function m, is defined by [tex]m(g(x))=x[/tex].

This means  m and g are inverse functions.

We want to find m'(4).

We differentiate [tex]m(g(x))=x[/tex] using the chain rule to get:

[tex]m'(g(x))\cdot g'(x)=1[/tex]

When x=2, we obtain:

[tex]m'(g(2))\cdot g'(2)=1[/tex]

From the table, [tex]g(2)=4[/tex] and [tex]g'(2)=0.4[/tex]

We substitute to get:

[tex]m'(4)\cdot 0.4=1[/tex]

Divide by 0.4

[tex]m'(4)=\frac{1}{0.4}[/tex]

[tex]m'(4)=2.5[/tex]

Other Questions