Answer :
Answer : The rate constant at 525 K is, [tex]0.0606M^{-1}s^{-1}[/tex]
Explanation :
According to the Arrhenius equation,
[tex]K=A\times e^{\frac{-Ea}{RT}}[/tex]
or,
[tex]\log (\frac{K_2}{K_1})=\frac{Ea}{2.303\times R}[\frac{1}{T_1}-\frac{1}{T_2}][/tex]
where,
[tex]K_1[/tex] = rate constant at [tex]701K[/tex] = [tex]2.57M^{-1}s^{-1}[/tex]
[tex]K_2[/tex] = rate constant at [tex]525K[/tex] = ?
[tex]Ea[/tex] = activation energy for the reaction = [tex]1.5\times 10^2kJ/mol=1.5\times 10^5J/mol[/tex]
R = gas constant = 8.314 J/mole.K
[tex]T_1[/tex] = initial temperature = 701 K
[tex]T_2[/tex] = final temperature = 525 K
Now put all the given values in this formula, we get:
[tex]\log (\frac{K_2}{2.57M^{-1}s^{-1}})=\frac{1.5\times 10^5J/mol}{2.303\times 8.314J/mole.K}[\frac{1}{701K}-\frac{1}{525K}][/tex]
[tex]K_2=0.0606M^{-1}s^{-1}[/tex]
Therefore, the rate constant at 525 K is, [tex]0.0606M^{-1}s^{-1}[/tex]