The reaction between nitrogen dioxide and carbon monoxide is NO2(g)+CO(g)→NO(g)+CO2(g)NO2(g)+CO(g)→NO(g)+CO2(g) The rate constant at 701 KK is measured as 2.57 M−1⋅s−1M−1⋅s−1 and that at 895 KK is measured as 567 M−1⋅s−1M−1⋅s−1. The activation energy is 1.5×102 1.5×102 kJ/molkJ/mol. Predict the rate constant at 525 KK .

Answer :

Answer : The rate constant at 525 K is, [tex]0.0606M^{-1}s^{-1}[/tex]

Explanation :

According to the Arrhenius equation,

[tex]K=A\times e^{\frac{-Ea}{RT}}[/tex]

or,

[tex]\log (\frac{K_2}{K_1})=\frac{Ea}{2.303\times R}[\frac{1}{T_1}-\frac{1}{T_2}][/tex]

where,

[tex]K_1[/tex] = rate constant at [tex]701K[/tex] = [tex]2.57M^{-1}s^{-1}[/tex]

[tex]K_2[/tex] = rate constant at [tex]525K[/tex] = ?

[tex]Ea[/tex] = activation energy for the reaction = [tex]1.5\times 10^2kJ/mol=1.5\times 10^5J/mol[/tex]

R = gas constant = 8.314 J/mole.K

[tex]T_1[/tex] = initial temperature = 701 K

[tex]T_2[/tex] = final temperature = 525 K

Now put all the given values in this formula, we get:

[tex]\log (\frac{K_2}{2.57M^{-1}s^{-1}})=\frac{1.5\times 10^5J/mol}{2.303\times 8.314J/mole.K}[\frac{1}{701K}-\frac{1}{525K}][/tex]

[tex]K_2=0.0606M^{-1}s^{-1}[/tex]

Therefore, the rate constant at 525 K is, [tex]0.0606M^{-1}s^{-1}[/tex]

Other Questions