A merry-go-round of radius 2.74 m and a moment of inertia of 340 kgm2 rotates without friction. It makes 1 revolution every 4.00 s. A child of mass 25.0 kg sitting at the center crawls out to the rim. Find (a) the new angular speed of the merry-go-round, and (b) the kinetic energy change during this process.

Answer :

xero099

Answer:

a) [tex]\omega_{f} = 1.012\,\frac{rad}{s}[/tex], b) [tex]\Delta K = - 149.352\,J[/tex]

Explanation:

a) The initial angular speed of the merry-go-round is:

[tex]\omega_{o} = \left(\frac{1\,rev}{4\,s}\right)\cdot \left(\frac{2\pi\,rad}{1\,rev} \right)[/tex]

[tex]\omega_{o} \approx 1.571\,\frac{rad}{s}[/tex]

The final angular speed of the merry-go-round is computed with the help of the Principle of Angular Momentum:

[tex]\left(340\,\frac{kg}{m^{2}}\right)\cdot \left(1.571\,\frac{rad}{s} \right) = \left[340\,\frac{kg}{m^{2}}+(25\,kg)\cdot (2.74\,m)^{2} \right]\cdot \omega_{f}[/tex]

[tex]\omega_{f} = 1.012\,\frac{rad}{s}[/tex]

b) The change in kinetic energy is:

[tex]\Delta K = \frac{1}{2}\cdot \left\{\left[340\,\frac{kg}{m^{2}} + \left(25\,kg\right)\cdot \left(2.74\,m\right)^{2}\right]\cdot \left(1.012\,\frac{rad}{s} \right)^{2} - \left(340\,\frac{kg}{m^{2}} \right)\cdot \left(1.571\,\frac{rad}{s} \right)^{2} \right\}[/tex][tex]\Delta K = - 149.352\,J[/tex]

Other Questions