The angle \theta_1θ 1 ​ theta, start subscript, 1, end subscript is located in Quadrant \text{I}Istart text, I, end text, and \cos(\theta_1)=\dfrac{3}{8}cos(θ 1 ​ )= 8 3 ​ cosine, (, theta, start subscript, 1, end subscript, ), equals, start fraction, 3, divided by, 8, end fraction . What is the value of \sin(\theta_1)sin(θ 1 ​ )sine, (, theta, start subscript, 1, end subscript, )? Express your answer exactly.

Answer :

Answer:

[tex]\sin(\theta_1) =\frac{\sqrt{55} }{8}[/tex]

Step-by-step explanation:

The angle [tex]\theta_1[/tex] is located in Quadrant I and [tex]\cos(\theta_1)=\frac{3}{8}[/tex]

From Trigonometric ratio, In the First Quadrant

[tex]\cos \theta=\frac{Adjacent}{hypotenuse}[/tex]

Adjacent =3, Hypotenuse =8

Using Pythagoras Theorem

[tex]Hypotenuse^2=Opposite^2+Adjacent^2\\8^2=Opposite^2+3^2\\Opposite^2=64-9=55\\Opposite=\sqrt{55}[/tex]

Therefore:

[tex]\sin(\theta_1)=\frac{Opposite}{Hypotenuse}\\\sin(\theta_1) =\frac{\sqrt{55} }{8}[/tex]

Other Questions