Answer :
Answer:
(A) [tex]\alpha =11.277rad/sec^2[/tex]
(B) [tex]\Theta =2846.30rad[/tex]
Explanation:
We have given initial angular speed
[tex]\omega _i=1150rpm=\frac{2\times 3.14\times 1150}{60}=120.366rad/sec[/tex]
[tex]\omega _f=2680rpm=\frac{2\times 3.14\times 2680}{60}=280.506rad/sec[/tex]
Time t = 14.2 sec
(a) From first equation of motion
[tex]\omega _f=\omega _i+\alpha t[/tex]
[tex]280.506=120.366+\alpha \times 14.2[/tex]
[tex]\alpha =11.277rad/sec^2[/tex]
(b) From third equation of motion
[tex]\omega _f^2=\omega _i^2+2\alpha \Theta[/tex]
[tex]280.506^2=120.366^2+2\times 11.277\times \Theta[/tex]
[tex]\Theta =2846.30rad[/tex]