The plane x+y+2z=8 intersects the paraboloid z=x2+y2 in an ellipse. Find the points on this ellipse that are nearest to and farthest from the origin. Point farthest away occurs at ( , , ). Point nearest occurs at (

Answer :

jolis1796

Answer:

The minimum distance of   √((195-19√33)/8)  occurs at  ((-1+√33)/4; (-1+√33)/4; (17-√33)/4)  and the maximum distance of  √((195+19√33)/8)  occurs at (-(1+√33)/4; - (1+√33)/4; (17+√33)/4)

Step-by-step explanation:

Here, the two constraints are

g (x, y, z) = x + y + 2z − 8  

and  

h (x, y, z) = x ² + y² − z.

Any critical  point that we find during the Lagrange multiplier process will satisfy both of these constraints, so we  actually don’t need to find an explicit equation for the ellipse that is their intersection.

Suppose that (x, y, z) is any point that satisfies both of the constraints (and hence is on the ellipse.)

Then the distance from (x, y, z) to the origin is given by

√((x − 0)² + (y − 0)² + (z − 0)² ).

This expression (and its partial derivatives) would be cumbersome to work with, so we will find the the extrema  of the square of the distance. Thus, our objective function is

f(x, y, z) = x ² + y ² + z ²

and

∇f = (2x, 2y, 2z )

λ∇g = (λ, λ, 2λ)

µ∇h = (2µx, 2µy, −µ)

Thus the system we need to solve for (x, y, z) is

                           2x = λ + 2µx                         (1)

                           2y = λ + 2µy                       (2)

                           2z = 2λ − µ                          (3)

                           x + y + 2z = 8                      (4)

                           x ² + y ² − z = 0                     (5)

Subtracting (2) from (1) and factoring gives

                     2 (x − y) = 2µ (x − y)

so µ = 1  whenever x ≠ y. Substituting µ = 1 into (1) gives us λ = 0 and substituting µ = 1 and λ = 0  into (3) gives us  2z = −1  and thus z = − 1 /2 . Subtituting z = − 1 /2  into (4) and (5) gives us

                            x + y − 9 = 0

                         x ² + y ² +  1 /2  = 0

however, x ² + y ² +  1 /2  = 0  has no solution. Thus we must have x = y.

Since we now know x = y, (4) and (5) become

2x + 2z = 8

2x  ² − z = 0

so

z = 4 − x

z = 2x²

Combining these together gives us  2x²  = 4 − x , so

2x²  + x − 4 = 0 which has solutions

x =  (-1+√33)/4

and

x = -(1+√33)/4.

Further substitution yeilds the critical points  

((-1+√33)/4; (-1+√33)/4; (17-√33)/4)   and

(-(1+√33)/4; - (1+√33)/4; (17+√33)/4).

Substituting these into our  objective function gives us

f((-1+√33)/4; (-1+√33)/4; (17-√33)/4) = (195-19√33)/8

f(-(1+√33)/4; - (1+√33)/4; (17+√33)/4) = (195+19√33)/8

Thus minimum distance of   √((195-19√33)/8)  occurs at  ((-1+√33)/4; (-1+√33)/4; (17-√33)/4)  and the maximum distance of  √((195+19√33)/8)  occurs at (-(1+√33)/4; - (1+√33)/4; (17+√33)/4)

In this question, we have 2 constraints:

The plane                        g ( x , y , z ) = x + y + 2 z - 8

The paraboloid             h ( x , y , z ) = x² + y² - z

We need to apply Lagrange Multipliers to answer it

The solution are:

The nearest point P = ( -9.06/4   ,   -9.06 /4  ,  6.23 )

The farthest point Q  (  (7.06) /4  ,  (7.06) /4 ,  10.26)

The Objective Function (F) is the distance between the ellipse and the origin, In this case,  we don´t need to know the equation of the ellipse

The Objective Function is

F = √ x² + y² + z²    and as this function has the same critical points that

F  = x² + y² + z²  we will use this one

Then:

     δF/δx  = 2×x               δF/δy  = 2×y                 δF/δz = 2×z

   λ ×δg/δx =  λ                  λ δg/δy = λ                  λ δg/δz = 2× λ    

   μ× δh/δx = 2× μ×x         μ× δh/δy = 2× μ×y        μ× δh/δz= - μ

Therefore we get our five equations.

2×x  =  λ   +  2× μ×x      (1)

2×y  =  λ   +  2× μ×y      (2)

2×z  = 2× λ  -  μ             (3)

x + y + 2 z - 8 = 0          (4)

x² + y² - z = 0                (5)

Subtracting equation (2) from equation (1)

2×x  - 2×y  = 2× μ×x -  2× μ×y

( x - y ) =  μ × ( x - y )       then   μ = 1   and by substitution in eq. (2)

2×y  =  λ   +  2×y        then       λ  = 0

From eq. (3)

2×z  = - 1                                   z = -1/2

By subtitution in eq. (4) and (5)

x  +  y  - 1 - 8 = 0     ⇒   x  +  y  = 9

x² + y² + 1/2  = 0        this equation has no solution.

If we make  x = y

Equation (4) and (5) become

2× x + 2× z = 8

2×x² - z = 0        ⇒         z = 2×x²

2× x + 4×x² = 8     ⇒   2×x² + x - 8 = 0

Solving for x          x₁,₂ = ( -1 ± √ 1 + 64 ) / 4

x₁,₂ = ( -1 ± √65 ) 4

x₁ = (-1 + √65) /4            x₂ = ( -1 - √65) /4          √ 65  = 8.06

x₁ = 1.765            x₂ = - 2.265

And  z = 2×x²      ⇒      z₁ =  6.23          z₂  =

And critical points are:

P ( x₁  y₁  z₁ )      (  (7.06) /4  ,  (7.06) /4 ,  6.23 )

Q ( x₂  y₂ z₂ )      ( -9.06/4   ,   -9.06 /4  ,  10.26 )

And by simple  inspeccion we see That

minimum distance is the point P = ( -9.06/4   ,   -9.06 /4  ,  6.23 )

the point Q  (  (7.06) /4  ,  (7.06) /4 ,  10.26) is the farthest point

Related Link : https://brainly.com/question/4609414

Other Questions