Answered

Cold water (cp = 4180 J/kg·K) leading to a shower enters a thin-walled double-pipe counterflow heat exchanger at 15°C at a rate of 0.25 kg/s and is heated to 45°C by hot water (cp = 4190 J/kg·K) that enters at 100°C at a rate of 3 kg/s. If the overall heat transfer coefficient is 950 W/m2·K, determine the rate of heat transfer and the heat transfer surface area of the heat exchanger using the ε–NTU method. Answers: 31.35 kW, 0.482 m2

Answer :

Answer:

The rate of heat transfer is  [tex]H = 31.35\ kW[/tex]

The heat transfer surface area is  [tex]A_s = 0.4818 m^2[/tex]

Explanation:

From the question we are told that  

          The  specific heat of water is [tex]cp = 4180 \ J/kg \cdot K[/tex]

           The temperature of cold water is [tex]T_c = 15^o C[/tex]

            The rate of cold the flow is [tex]\r m = 0.25 kg/s[/tex]

           The temperature of the heated water [tex]T_h = 45 ^oC[/tex]

            The specific heat of hot water is  [tex]c_p__{H}} = 4190 J/kg \cdot K[/tex]

              The temperature of the hot water is [tex]T_H = 100^oC[/tex]

               The rate of hot the flow is [tex]\r m_H = 3 kg/s[/tex]

               The heat transfer coefficient is [tex]U = 950 W/m^2 \cdot K,[/tex]

From the [tex]\epsilon -NTU[/tex] method we have that

       [tex]C_h = \r m_H c_p__{H}}[/tex]

Where [tex]C_h[/tex] is the heat capacity rate of hot  water

      Substituting the value

            [tex]C_h = 3 * (4190)[/tex]

                 [tex]= 12,5700\ W/^oC[/tex]

Also

      [tex]C_c = \r m c_p[/tex]

Where [tex]C_c[/tex] is the heat capacity rate of cold  water

        [tex]C_c = 0.25 * 4180[/tex]

              [tex]= 1045 \ W / ^oC[/tex]

The maximum heat capacity [tex]C_h[/tex] and the minimum  heat capacity is [tex]C_c[/tex]

       The maximum heat transfer is

                [tex]H_{max} = C_c (T_H - T_c)[/tex]

Substituting values  

               [tex]H_{max} = (1045)(100- 15)[/tex]

                          [tex]= 88,825\ W[/tex]

The actual heat transfer is mathematically evaluated as

               [tex]H = C_c (T_h - T_c)[/tex]

Substituting values

               [tex]H = 1045 (45 - 15 )[/tex]

                    [tex]H = 31350 \ W[/tex]

                    [tex]H = 31.35\ kW[/tex]

The effectiveness of the heat exchanger is mathematically evaluated as

             [tex]\epsilon = \frac{H}{H_{max}}[/tex]

  Substituting values  

           [tex]\epsilon = \frac{31350}{88,825}[/tex]

              [tex]= 0.35[/tex]

The NTU of the heat exchanger is mathematically represented as

          [tex]NTU = \frac{1}{C-1} ln [\frac{\epsilon - 1}{\epsilon C -1} ][/tex]

Where C is the ratio of the minimum to the maximum heat capacity which is mathematically represented as

             [tex]C = \frac{C_c}{C_h}[/tex]

Substituting values

             [tex]C = \frac{1045}{12,570}[/tex]

                 [tex]= 0.083[/tex]

Substituting values in to the equation for NTU

         [tex]NTU = \frac{1}{0.083 -1} ln[\frac{0.35 - 1}{0.35 * (0.083 - 1)} ][/tex]

                   [tex]= 0.438[/tex]

Generally the heat transfer surface area can be mathematically represented as

         [tex]A_s = \frac{NTU C_c}{U}[/tex]

Substituting values

          [tex]A_s = \frac{(0.438) (1045)}{950}[/tex]

              [tex]A_s = 0.4818 m^2[/tex]

Other Questions