Answered

What is the product?

StartFraction 4 k + 2 Over k squared minus 4 EndFraction times StartFraction k minus 2 Over 2 k + 1 EndFraction

Answer :

Answer:

[tex]\frac{4k + 2}{k^{2}-4 }[/tex]  ×  [tex]\frac{k-2}{2k+1}[/tex]   =  [tex]\frac{2}{k + 2}[/tex]

Step-by-step explanation:

[tex]\frac{4k + 2}{k^{2}-4 }[/tex]  ×  [tex]\frac{k-2}{2k+1}[/tex]

To solve the above, we need to follow the steps below;

4k+2 can be factorize, so that;

4k +2 = 2 (2k + 1)

k² - 4  can also be be expanded, so that;

k² - 4 = (k-2)(k+2)

Lets replace  4k +2  by  2 (2k + 1)

and

k² - 4 by  (k-2)(k+2)   in the expression  given

[tex]\frac{4k + 2}{k^{2}-4 }[/tex]  ×  [tex]\frac{k-2}{2k+1}[/tex]

[tex]\frac{2(2k+ 1)}{(k-2)(k+2)}[/tex]   ×  [tex]\frac{k-2}{2k+1}[/tex]

(2k+1) at the numerator will cancel-out (2k+1) at the denominator, also (k-2) at the numerator will cancel-out (k-2) at the denominator,

So our expression becomes;  

[tex]\frac{2}{k + 2}[/tex]

Therefore, [tex]\frac{4k + 2}{k^{2}-4 }[/tex]  ×  [tex]\frac{k-2}{2k+1}[/tex]   =  [tex]\frac{2}{k + 2}[/tex]

Answer:

The answer is D

Step-by-step explanation:

Other Questions