Answer :
Answer:
5 kJ/g
Explanation:
There are two energy flows in this reaction.
q₁ = heat from reaction
q₂ = heat to warm the solution
q₁ + q₂ = 0
m₁ΔH + m₂CΔT = 0
Data:
m₁ = 0.258 g
V₂ = 100 mL
C = 4.184 J°C⁻¹g⁻¹
T_i = 22 °C
T_f = 25.1 °C
Calculations
(a) Mass of solution
[tex]\text{Mass} = \text{100 mL} \times \dfrac{\text{1.00 g}}{\text{1 mL}} = \text{100 g}[/tex]
(b) ΔT
ΔT = T_f - T_i = 25.1 °C - 22 °C = 3.1°C
(c) ΔH
[tex]\begin{array}{ccccl}m_{1}\Delta H & +& m_{2}C \Delta T& = &0\\\text{0.258 g}\times \Delta H& + & \text{100 g} \times 4.184 \text{ J$^{\circ}$C$^{-1}$g$^{-1}$} \times 3.1 \, ^{\circ}\text{C} & = & 0\\0.258 \Delta H \text{ g} & + & \text{1300 J} & = & 0\\&&0.258 \Delta H \text{ g} & = & \text{-1300 J} & & \\& &\Delta H & = & \dfrac{\text{-1300 J}}{\text{0.258 g}}\\\\& & & = & \text{-5000 J/g}\\& & & = & \textbf{-5 kJ/g}\\\end{array}[/tex]
[tex]\text{The reaction produces $\large \boxed{\textbf{5 kJ}}$ per gram of potassium.}[/tex]
Note: The answer can have only one significant figure because you measured the initial temperature of the water only to the nearest degree.
From the calculation, the heat generated from the solution is -194.4 kJ/mol
What is a calorimeter?
A calorimeter is an instrument that is used to measure heat.
Now we know that number of moles of the potassium = 0.258 g /39 g/mol = 0.0066 moles
Total mass present = 0.258 g + 100 g = 100.258 g
Temperature change = 25.1°C - 22°C = 3.1°C
Now;
H = -(100.258 * 4.128 * 3.1)/ 0.0066
= -194.4 kJ/mol
Learn more about calorimeter:https://brainly.com/question/4802333?
#SPJ9