Which expression is equivalent to Negative 32 Superscript three-fifths?
–8
Negative RootIndex 3 StartRoot 32 Superscript 5 Baseline EndRoot
StartFraction 1 Over RootIndex 3 StartRoot 32 Superscript 5 Baseline EndRoot EndFraction
One-eighth

Answer :

Answer:

[tex]-8[/tex]

Step-by-step explanation:

Given: [tex](-32)^{(\frac{3}{5}) }[/tex]

To choose: the correct option

Solution:

Power refers to a number of times, a number is multiplied by itself. Another name for power is exponent.

As per rule of exponents, [tex](a^m)^n=a^{mn}[/tex]

Here,

[tex](-32)=(-2)^5[/tex]

Therefore,

[tex](-32)^{(\frac{3}{5}) }=[(-2)^5]^{(\frac{3}{5}) }=(-2)^{5(\frac{3}{5}) }[/tex]

Here, [tex]a=-2,m=5,n=\frac{3}{5}[/tex]

So,

[tex](-32)^{(\frac{3}{5}) }=[(-2)^5]^{(\frac{3}{5}) }=(-2)^{5(\frac{3}{5}) }=(-2)^3=-8[/tex]

Answer:

-8

Step-by-step explanation:

i took the test

Other Questions