Answer :
Answer:
a) N = 9 Mg
, b)N_w = μ 9M
, c)
Explanation:
a) For this part we write the equations of trslacinal equilibrium
Axis y
N - Mg - 8M g = 0
N = 9 Mg
N = 9 11 9.8
N = 970.2 N
b) the force on the horizontal axis (x) som
fr -N_w = 0
fr = N_w
friction force is
fr = μ N
N_w = μ 9M
g
fr = 0.59 970.2
fr = N_w = 572,418 N
c) For this part we must use rotational equilibrium.
Στ = 0
We set a frame of reference at the bottom of the ladder and assume that the counterclockwise acceleration is positive
the weight of it is at its midpoint (L / 2)
- W L /2 cos 54 - 8M d_max cos 54+ NW L sin 54 = 0
8M d_max cos 54 = - W L / 2 cos 54 + NW L sin 54
d_max = L (-Mg 1/2 cos 54 + NW sin 54) / (8M cos 54)
d_max = L (-g / 16 + μ 9Mg / 8M tan 54)
d_max = L ( 9/8 μ g tan 54- g/16)