Answer :
use the first x then subtract the second x. then the y then the second y. yes it does matter because the numbers you subtract will add up to your answer
Answer:
No, order in which we subtract the x coordinates and y coordinates does nor matter
Step-by-step explanation:
Let the two points be [tex]\left ( x_1,y_1 \right )\,\,,\,\,\left ( x_2,y_2 \right )[/tex]
By distance formula: distance between points [tex]\left ( x_1,y_1 \right )\,\,,\,\,\left ( x_2,y_2 \right )[/tex] is equal to [tex]\sqrt{\left ( x_2-x_1 \right )^2+\left ( y_2-y_1 \right )^2}[/tex]
We know that [tex]\left ( x_2-x_1 \right )^2=\left ( x_1-x_2 \right )^2[/tex] and [tex]\left ( y_2-y_1 \right )^2=\left ( y_1-y_2 \right )^2[/tex]
So,
[tex]\sqrt{\left ( x_2-x_1 \right )^2+\left ( y_2-y_1 \right )^2}\\=\sqrt{\left ( x_1-x_2 \right )^2+\left ( y_1-y_2 \right )^2}[/tex]
Therefore, we can say in distance formula , order in which we subtract the x coordinates and y coordinates does nor matter .
For example distance between points [tex]\left ( 2,3 \right )\,,\,\left ( 4,5 \right )[/tex] is shown as below :
[tex]\sqrt{\left ( 4-2 \right )^2+\left ( 5-3 \right )^2}\\=\sqrt{\left ( 2-4 \right )^2+\left ( 3-5 \right )^2}\\=\sqrt{4+4}\\=\sqrt{8}[/tex]