. A 600-gallon tank is lled with 300 gal of pure water. A spigot isopened and a salt solution containing 1 lb of salt per gallon begins owinginto the tank at a rate of 3gal/min. Simultaneously, a drain is opened atthe bottom of the tank allowing the mixture to leave the tank at a rate of1gal/min. What will be the salt content in the tank at the precise momentthat the volume of solution in the tank reaches the tank's capacity?

Answer :

Answer:

387.87 lb

Step-by-step explanation:

Rate of flow of salt solution, [tex]\frac{dy}{dt}[/tex] = (1 lb/gal * 3 gal/min) - ([tex]\frac{y}{300 + (3-1)t}[/tex]lb/gal * 1 gal/min)

[tex]\frac{dy}{dt}[/tex] = 3 - [tex]\frac{y}{300 + 2t}[/tex]

[tex]\frac{dy}{dt}[/tex] + [tex]\frac{y}{300 + 2t}[/tex] = 3

The linear differential equation with Q = [tex]\frac{1}{2t+300}[/tex] , R = 3

I.F. = e[tex]\int\limits {\frac{1}{2t+300} } \, dt[/tex] = [tex](t+150)^{\frac{1}{2} }[/tex]

y * I.F. = [tex]\int\limits {Q *I.F.} \, dt+c[/tex]

y[tex](t+150)^{\frac{1}{2} }[/tex] = [tex]\int\limits {3*(t+150)^{\frac{1}{2} }} \, dt+c[/tex]

At y = 0, t = o, c = [tex]-2(150)^{\frac{3}{2} }[/tex]

y[tex](t+150)^{\frac{1}{2} }[/tex] = [tex]2(t+150)^{\frac{3}{2} }[/tex] [tex]-2(150)^{\frac{3}{2} }[/tex]

y = 2(t + 150) - [tex]\frac{2(150)\frac{3}{2} }{(t+150)\frac{1}{2} }[/tex]

Net rate of solution accumulation = (3 - 1) gal/min = 2 gal/min

300 gallon was already there when t = 0.

Time taken to fill the gallon = 300 gal / 2 min/gal = 150 min

Salt content at t=150 min is given by

y = 2(150+150) - [tex]\frac{2(150)\frac{3}{2} }{(150+150)\frac{1}{2} }[/tex]

y = 387.87 lb

Other Questions