Answer :
Answer:
k = 6,547 N / m
Explanation:
This laboratory experiment is a simple harmonic motion experiment, where the angular velocity of the oscillation is
w = √ (k / m)
angular velocity and rel period are related
w = 2π / T
substitution
T = 2π √(m / K)
in Experimental measurements give us the following data
m (g) A (cm) t (s) T (s)
100 6.5 7.8 0.78
150 5.5 9.8 0.98
200 6.0 10.9 1.09
250 3.5 12.4 1.24
we look for the period that is the time it takes to give a series of oscillations, the results are in the last column
T = t / 10
To find the spring constant we linearize the equation
T² = (4π²/K) m
therefore we see that if we make a graph of T² against the mass, we obtain a line, whose slope is
m ’= 4π² / k
where m’ is the slope
k = 4π² / m'
the equation of the line of the attached graph is
T² = 0.00603 m + 0.0183
therefore the slope
m ’= 0.00603 s²/g
we calculate
k = 4 π² / 0.00603
k = 6547 g / s²
we reduce the mass to the SI system
k = 6547 g / s² (1kg / 1000 g)
k = 6,547 kg / s² =
k = 6,547 N / m
let's reduce the uniqueness
[N / m] = [(kg m / s²) m] = [kg / s²]

The spring-mass system forms a linear graph between the time period and mass. And the value of spring-constant from the given data is 6.46 N/m.
Given data:
Mass suspended by spring is, [tex]m=100 \;\rm g =0.1 \;\rm kg[/tex].
Number of oscillations is, [tex]n =10\;\rm oscillations[/tex].
Time period of oscillation is, [tex]T=7.8 \;\rm s[/tex].
The expression for the angular frequency of spring-mass system is,
[tex]\omega =\drac \sqrt{\dfrac{k}{m} }[/tex] ......................................................(1)
Here, k is the spring constant.
Angular frequency is also expressed as,
[tex]\omega = 2 \pi f[/tex] .........................................................(2)
here, f is the linear frequency of spring-mass system.
And linear frequency is,
[tex]f=\dfrac{n}{T}\\f=\dfrac{10}{7.81}\\f=1.28 \;\rm cycles/sec[/tex]
Then substitute equation (2) in equation (1) as,
[tex]2 \pi f=\drac \sqrt{\dfrac{k}{m} }\\2 \pi \times 1.28=\drac \sqrt{\dfrac{k}{0.1} }\\(2 \pi \times 1.28)^{2}= \dfrac{k}{0.1}\\k = 6.46 \;\rm N/m[/tex]
Thus, the value of spring constant is 6.46 N/m. And the suitable graph for the spring-mass system is given below.
Learn more about spring-mass system here:
https://brainly.com/question/16077243?referrer=searchResults
