Answered

A hockey puck on a frozen pond is given an initial speed of 20.0 m/s. If the puck always remains on the ice and slides 115 m before coming to rest, determine the coefficient of kinetic friction between the puck and ice.

Answer :

Answer:

μ_k = 0.1773

Explanation:

We are given;

Initial velocity;u = 20 m/s

Final velocity;v = 0 m/s (since it comes to rest)

Distance before coming to rest;s = 115 m

Let's find the acceleration using Newton's second law of motion;

v² = u² + 2as

Making a the subject, we have;

a = (v² - u²)/2s

Plugging relevant values;

a = (0² - 20²)/(2 × 115)

a = -400/230

a = -1.739 m/s²

From the question, the only force acting on the puck in the x direction is the force of friction. Since friction always opposes motion, we see that:

F_k = −ma - - - (1)

We also know that F_k is defined by;

F_k = μ_k•N

Where;

μ_k is coefficient of kinetic friction

N is normal force which is (mg)

Since gravity acts in the negative direction, the normal force will be positive.

Thus;

F_k = μ_k•mg - - - (2)

where g is acceleration due to gravity.

Thus,equating equation 1 and 2,we have;

−ma = μ_k•mg

m will cancel out to give;

-a = μ_k•g

μ_k = -a/g

g has a constant value of 9.81 m/s², so;

μ_k = - (-1.739/9.81)

μ_k = 0.1773

Lanuel

The coefficient of kinetic friction between the hockey puck and ice is equal to 0.178

Given the following data:

  • Initial speed = 20 m/s
  • Final velocity = 0 m/s (since it came to rest)
  • Distance = 115 m

Scientific data:

  • Acceleration due to gravity = 9.8 [tex]m/s^2[/tex]

To determine the coefficient of kinetic friction between the hockey puck and ice:

First of all, we would calculate the acceleration of the hockey puck by using the third equation of motion.

[tex]V^2 = U^2 + 2aS\\\\0^2 =20^2 + 2a(115)\\\\-400=230a\\\\a=\frac{-400}{230}[/tex]

Acceleration, a = -1.74 [tex]m/s^2[/tex]

Note: The negative signs indicates that the hockey puck is slowing down or decelerating.

From Newton's Second Law of Motion, we have:

[tex]\sum F_x = F_k + F_n =0\\\\F_k =- F_n\\\\\mu mg =-ma\\\\\mu = \frac{-a}{g}\\\\\mu = \frac{-(-1.74)}{9.8}\\\\\mu = \frac{1.74}{9.8}[/tex]

Coefficient of kinetic friction = 0.178

Read more: https://brainly.com/question/13821217

Other Questions