Answer :
Answer:
- x = -4
Step-by-step explanation:
A graphing calculator shows there is one solution to ...
[tex]\log_7{(3x^2+x)}-\log_7{(x)}=2[/tex]
However, the usual solution method would be to combine the logarithms and take the antilog to get ...
[tex]\log_7{\left(\dfrac{3x^3+x}{x}\right)}=2\\\\\log_7{(3x^2 +1)}=2\\\\3x^2+1=7^2\\\\x^2=\dfrac{49-1}{3}=16\\\\x=\pm 4\qquad\text{take the square root}[/tex]
This gives two solutions. the "solution" x = -4 is extraneous, as it doesn't work in the original equation. "x" must be positive in the log expressions.
