Answer :
Answer:
[tex]3\sqrt5 x+ \sqrt x (6 \sqrt{10} +5\sqrt{3}) +10 \sqrt6[/tex]
Step-by-step explanation:
To find the product :
[tex](\sqrt{3x} +\sqrt5)(\sqrt{15x} +2\sqrt{30})[/tex]
[tex]\sqrt{3x}(\sqrt{15x} +2\sqrt{30}) +\sqrt5(\sqrt{15x} +2\sqrt{30})\\\Rightarrow \sqrt{3x}\times \sqrt{15x} +\sqrt{3x}\times 2\sqrt{30} +\sqrt5 \times \sqrt{15x} +\sqrt5\times 2\sqrt{30}\\\Rightarrow \sqrt{45} \times x + 2 \sqrt{90x} + \sqrt{75x} + 2 \sqrt{150}\\\Rightarrow \sqrt{5 \times 9} \times x + 2 \sqrt{9\times 10x} + \sqrt{25 \times 3x} + 2 \sqrt{25 \times 6}\\\Rightarrow 3\sqrt5 x+ 2 \times 3 \sqrt{10x} +5\sqrt{3x} +2 \times 5 \sqrt6\\\Rightarrow 3\sqrt5 x+ 6 \sqrt{10x} +5\sqrt{3x} +10 \sqrt6[/tex]
[tex]\Rightarrow 3\sqrt5 x+ \sqrt x (6 \sqrt{10} +5\sqrt{3}) +10 \sqrt6[/tex]
Some identities used:
1. [tex](a+b)(c+d) = a (c+d) + b(c+d)[/tex]
2. [tex]\sqrt9 =3[/tex]
3. [tex]\sqrt{25} =5[/tex]
4. [tex]\sqrt x \times \sqrt x=x[/tex]
5. [tex]\sqrt a \times \sqrt b = \sqrt{ab}[/tex]
So, the solution is [tex]3\sqrt5 x+ \sqrt x (6 \sqrt{10} +5\sqrt{3}) +10 \sqrt6[/tex]