For the function p defined by p(m)=2m2−4m+3, find p(13).

Answer:
[tex]\frac{17}{9}[/tex]
Step-by-step explanation:
[tex]2\left(\frac{1}{3}\right)^2-4\left(\frac{1}{3}\right)+3[/tex]
[tex]2\left(\frac{1}{9}\right)-4\left(\frac{1}{3}\right)+3[/tex]
[tex]\frac{2}{9}-\frac{4}{3}+3[/tex]
[tex]\frac{2}{9}-\frac{4}{3}+\frac{3}{1}[/tex]
[tex]\frac{2}{9}-\frac{4 \times 3}{3 \times 3}+\frac{3 \times 9}{1 \times 9}[/tex]
[tex]\frac{2}{9}-\frac{12}{9}+\frac{27}{9}[/tex]
[tex]\frac{2-12+27}{9}[/tex]
[tex]=\frac{17}{9}[/tex]
Answer:
Option C
Step-by-step explanation:
=> p(m) = [tex]2m^2-4m+3[/tex]
Putting m = [tex]\frac{1}{3}[/tex]
=> p(1/3) = [tex]2(\frac{1}{3})^2-4(\frac{1}{3} )+3[/tex]
=> p(1/3) = [tex]\frac{2}{9}-\frac{4}{3} +3[/tex]
=> p(1/3) = [tex]\frac{2-12+27}{9}[/tex]
=> p(1/3) = [tex]\frac{17}{9}[/tex]