Answer :
Answer:
[tex] \frac{2xz + 3xy}{5yz} \: seconds[/tex]
solution,
[tex]time = \frac{distance}{speed} [/tex]
Let race be X meters.
Total time taken:
[tex] \frac{40 \: percent \: of \: x}{y \: metre\: per \: second} + \frac{60 \: percent \: of \: x}{z \: metre \: per \: second} \\ = \frac{40}{100} \times \frac{x}{y} + \frac{60}{100} \times \frac{x}{z} \\ = \frac{2}{5} \times \frac{x}{y} + \frac{3}{5} \times \frac{x}{z} \\ = \frac{1}{5} ( \frac{2x}{y} + \frac{3x}{z} ) \\ = \frac{x}{5} ( \frac{2z + 3y}{yz} ) \\ = \frac{2xz + 3xy}{5yz} \: seconds[/tex]
hope this helps...
Good luck on your assignment...
Answer:
t= 0.2x (2/y + 3/z)
Step-by-step explanation:
Distance:
40% of the race= 0.4x
60% of the race= 0.6x
Speed:
y m/s at first part and z m/s at second part
Time:
time= distance/speed, it also consists on 2 parts due to different speed
t= 0.4x/y + 0.6x/z
or
t= 0.2x (2/y + 3/z) seconds is the answer