Answer :

Answer:

[tex](fof^{-1})(x)=x[/tex]

Step-by-step explanation:

Composition of two functions f(x) and g(x) is represented by,

(fog)(x) = f[g(x)]

If a function is,

f(x) = (-6x - 8)² [where x ≤ [tex]-\frac{8}{6}[/tex]]

Another function is the inverse of f(x),

[tex]f^{-1}(x)=-\frac{\sqrt{x}+8}{6}[/tex]

Now composite function of these functions will be,

[tex](fof^{-1})(x)=f[f^{-1}(x)][/tex]

                  = [tex][-6(\frac{\sqrt{x}+8}{6})-8]^{2}[/tex]

                  = [tex][-\sqrt{x}+8-8]^2[/tex]

                  = [tex](-\sqrt{x})^2[/tex]

                  = x

Therefore, [tex](fof^{-1})(x)=x[/tex]

Other Questions