Need help on this math problem!!!

Answer:
[tex](fof^{-1})(x)=x[/tex]
Step-by-step explanation:
Composition of two functions f(x) and g(x) is represented by,
(fog)(x) = f[g(x)]
If a function is,
f(x) = (-6x - 8)² [where x ≤ [tex]-\frac{8}{6}[/tex]]
Another function is the inverse of f(x),
[tex]f^{-1}(x)=-\frac{\sqrt{x}+8}{6}[/tex]
Now composite function of these functions will be,
[tex](fof^{-1})(x)=f[f^{-1}(x)][/tex]
= [tex][-6(\frac{\sqrt{x}+8}{6})-8]^{2}[/tex]
= [tex][-\sqrt{x}+8-8]^2[/tex]
= [tex](-\sqrt{x})^2[/tex]
= x
Therefore, [tex](fof^{-1})(x)=x[/tex]