Answered

By first calculating the size of angle LMN, calculate the area of triangle MNL. You must show all your working.

By first calculating the size of angle LMN, calculate the area of triangle MNL. You must show all your working. class=

Answer :

Answer:

m(∠LMN) = 67.44°

Area of ΔMNL = 16.66 square units

Step-by-step explanation:

By applying Sine rule in the ΔLMN,

[tex]\frac{\text{Sin}M}{\text{NL}}=\frac{\text{Sin}N}{\text{ML}}[/tex]

[tex]\frac{\text{Sin}M}{7.2}}=\frac{\text{Sin}38}{\text{4.8}}[/tex]

SinM = [tex]\frac{\text{Sin}38\times 7.2}{4.8}[/tex]

SinM = 0.9235

M = [tex]\text{Sin^{-1}}(0.9235)[/tex][tex]\text{Sin}^{-1} (0.9235)[/tex]

M = 67.44°

m(∠M) + m(∠N) + m(∠L) = 180°

67.44 + 38 + m(∠L) = 180°

m(∠L) = 180 - 105.44

m(∠L) = 74.56°

Area of ΔMNL = [tex]\frac{1}{2}(\text{ML})(\text{NL})\text{Sin}(74.56)[/tex]

                        = [tex]\frac{1}{2}(4.8)(7.2)(0.96391)[/tex]

                        = 16.66 square units

Other Questions