Answer :

Answer:

Option B.

Step-by-step explanation:

The given triangle is a right angle triangle.

In a right angle triangle,

[tex]\tan \theta=\dfrac{Perpendicular}{Base}[/tex]

In the given triangle,

[tex]\tan (45^{\circ})=\dfrac{v}{7}[/tex]

[tex]1=\dfrac{v}{7}[/tex]

[tex]7=v[/tex]

Using Pythagoras theorem, we get

[tex]hypotenuse^2=Perpendicular^2+Base^2[/tex]

[tex]u^2=v^2+7^2[/tex]

[tex]u^2=7^2+7^2[/tex]

[tex]u^2=2(7^2)[/tex]

Taking square root on both sides, we get

[tex]u=\sqrt{2(7^2)}[/tex]

[tex]u=7\sqrt{2}[/tex]

Therefore, the correct option is B.

Other Questions