Carbon dioxide enters an adiabatic nozzle steadily at 1 MPa and 500 C with a mass flow rate of 6000 kg/hr and leaves at 100 kPa and 450 m/s. The inlet area of the nozzle is 40 cm2. Determine the following:
a) the inlet velocity.
b) the exit temperature.

Answer :

Answer:

a) The inlet velocity, v₁ = 60.95 m/s

b) The exit temperature, [tex]T_2 = 687.02[/tex]

Explanation:

a) Determine the inlet velocity

The gas considered is [tex]CO_2[/tex]

The inlet Area of the nozzle, [tex]A_1 = 40 cm^2[/tex] = 0.004 m²

Gas constant for [tex]CO_2[/tex], R = 0.1889 kJ/kg-K

Input Pressure, P₁ = 1 MPa = 1000 kPa

Output Pressure, P₂ = 100 kPa

Input temperature, T₁ = 500°C = 500 + 273 = 773 K

Mass flow rate,

[tex]\dot{m} = 6000 kg/hr\\\dot{m} = \frac{6000}{3600} = 1.67 kg/s[/tex]

The relationship between mass flow rate and Inlet velocity is given by:

[tex]\dot{m} = \rho_1 A_1 v_1[/tex]..............(*)

It is necessary to first get the input density, [tex]\rho_1[/tex] using the relationship below:

[tex]P_1 = \rho_1 R_1 T_1\\1000 = \rho_1 * 0.1889 * 773\\\rho_1 = \frac{1000}{0.1889 * 773} \\\rho_1 = 6.85 kg/m^2[/tex]

Insert the necessary parameters into equation (*) to determine the inlet velocity:

1.67 = 6.85 * 0.004 * v₁

1.67 = 0.0274 v₁

v₁ = 1.67/0.0274

v₁ = 60.95 m/s

b) The exit temperature

At [tex]T_1 = 773 K[/tex], [tex]c_p = 1.156 kJ/kg-K = 1156 J/kg-K[/tex]

Exit Velocity, v₂ = 450 m/s

In an adiabatic process, there is no exchange of heat

i.e energy expended = work done = 0, q = w = 0

There is no change in potential energy

For a steady state process:

[tex]q - w = c_p (T_2 - T_1) + 0.5(v_2^2 - v_1^2) + g(z_2 - z_1)[/tex]

Considering all the assumptions for an an adiabatic process, the equation above reduces to:

[tex]c_p (T_2 - T_1) = -0.5(v_2^2 - v_1^2)\\1156(T_2 - 500) = - 0.5(450^2 - 60.95^2)\\1156(T_2 - 500) = -99392.55\\T_2 - 500 = -99392.55/1156\\T_2 - 500 = -85.98\\T_2 = -85.98 + 500\\T_2 = 414.02^0C\\T_2 = 414.02 + 273\\T_2 = 687.02 K[/tex]

batolisis

A) The inlet velocity is : 60.95 m/s

B) The exit temperature is : 687.02 K

Given data :

Inlet Temperature ( T₁ ) = 500°C = 773 K

Inlet pressure ( P₁ ) = 1 MPa  =  10³ kPa

Mass flow rate = 6000 kg/h =  1.67 kg/s

outlet pressure ( P₂ ) = 100 kPa

outlet velocity ( V₂ ) = 450 m/s

Inlet area of nozzle = 40 cm² = 0.004 m²

A) Determine the inlet velocity ( V₁ )

R ( gas constant ) of CO₂ = 0.1889 kJ / kg.k

First step : Determine the value of ρ₁ ( density of CO₂ )

ρ₁ = [tex]\frac{P}{RT}[/tex]   --- ( 1 )

where : P = 1000 , R = 0.1889,  T = 773

ρ₁ = 1000 / ( 0.1889 * 773 )

   = 6.85 kg/m³

Next step : Determine the inlet velocity ( V₁ )

V₁ = mas flow rate / ( ρ₁ * inlet area of nozzle )

   = 1.67 / ( 6.85 * 0.004 )

   = 60.95 m/s

B) Determine the exit temperature

For an adiabatic process

Cp ( T1 - T2 ) = - 0.5 ( V₂² - V₁² ) ---- ( 2 )

where : V₂ = 450 m/s, Cp = 1156 kJ/kg.k, V₁ = 60.95 m/s, V₂ = 450 m/s, T₁ = 500°C

Back to equation ( 2 )

T₂ - 500 = -99392.55 / 1156

∴ T₂ = -85.98 + 500

       = 414.02°C =  687.02 K

Hence we can conclude that The inlet velocity is : 60.95 m/s and The exit temperature is : 687.02 K

Learn more about Adiabatic process : https://brainly.com/question/14926413

Other Questions