On a coordinate plane, 2 quadrilaterals are shown. Quadrilateral Q R S T has points (negative 1, 0), (5, 0), (3.5, negative 6) and (negative 2.5, negative 6). Quadrilateral Q prime R prime S prime T prime has points (negative 1, 2), (1, 2), (0.5, 0), and (negative 1.5, 0). Quadrilateral QRST is dilated and translated to form similar figure Q'R'S'T'. What is the scale factor for the dilation?

Answer :

Answer:

[tex]\dfrac{1}{3}[/tex].

Step-by-step explanation:

In quadrilateral QRST, Q(-1,0), R(5,0), S(3.5,-6), T(-2.5,-6).

In quadrilateral Q'R'S'T', Q'(-1,2), R'(1,2), S'(0.5,0), T'(-1.5,0).

Distance formula:

[tex]D=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]

Using distance formula , we get

[tex]QR=\sqrt{(5-(-1))^2+(0-0)^2}=\sqrt{6^2}=6[/tex]

[tex]Q'R'=\sqrt{(1-(-1))^2+(2-2)^2}=\sqrt{2^2}=2[/tex]

Now,  

[tex]\text{Scale factor}=\dfrac{Q'R'}{QR}[/tex]

[tex]\text{Scale factor}=\dfrac{2}{6}[/tex]

[tex]\text{Scale factor}=\dfrac{1}{3}[/tex]

Therefore the scale factor is [tex]\dfrac{1}{3}[/tex].

The given transformation of quadrilateral QRST to quadrilateral Q'R'S'T'

are a dilation and a translation, therefore,  QRST is similar to Q'R'S'T'.

[tex]\mathrm{The \ scale \ factor \ of \ the \ dilation\ between \ QRST \ and \ Q'R'S'T' \ is} \ \dfrac{1}{3}[/tex]

Reasons:

The vertices of the quadrilateral are;

Quadrilateral QRST

Q(-1, 0)

R(5, 0)

S(3.5, -6)

T(-1, 2)

Quadrilateral Q'R'S'T'

Q'(-1, 2)

R'(1, 2)

S'(0.5, 0)

T'(-1.5, 0)

The given transformation that gives quadrilateral Q'R'S'T' from quadrilateral  QRST are a dilation and a translation.

Required:

The scale factor of the dilation

Solution:

[tex]\mathrm{The \ scale \ factor \ of \ the \ dilation} = \dfrac{\mathrm{Length \ of \ \overline{Q'R'} }}{\mathrm{Length \ of \ \overline{QR}} }[/tex]

Length of [tex]\overline{Q'R'}} }[/tex] = 1 - (-1) = 2

Length of [tex]\overline{QR}} }[/tex] = 5 - (-1) = 6

Therefore;

[tex]\mathrm{The \ scale \ factor \ of \ the \ dilation} = \dfrac{2}{6} = \dfrac{1}{3}[/tex]

Learn more here:

https://brainly.com/question/12077721

Other Questions