A film distribution manager calculates that 9% of the films released are flops.If the manager is right, what is the probability that the proportion of flops in a sample of 442 released films would differ from the population proportion by greater than 4%? Round your answer to four decimal places.

Answer :

Answer:

the probability that the proportion of flops in a sample of 442 released films would differ from the population proportion by greater than 4%  is 0.0042

Step-by-step explanation:

Given that :

A film distribution manager calculates that 9% of the films released are flops

Let p be the probability for the movies that were released are flops;

[tex]\mu_p = P = 0.9[/tex]

If the manager is right, what is the probability that the proportion of flops in a sample of 442 released films would differ from the population proportion by greater than 4%

now; we know that our sample size = 442

the standard deviation of the variance  is [tex]\sigma_p= \sqrt{\dfrac{p(1-p)}{n}}[/tex]

[tex]\sigma_p= \sqrt{\dfrac{0.9(1-0.9)}{442}}[/tex]

[tex]\sigma_p= \sqrt{\dfrac{0.9(0.1)}{442}}[/tex]

[tex]\sigma_p= \sqrt{\dfrac{0.09}{442}}[/tex]

[tex]\sigma_p= \sqrt{2.0361991 \times 10^{-4}}[/tex]

[tex]\sigma _p = 0.014[/tex]

So; if the manager is right; the probability that the proportion of flops in a sample of 442 released films would differ from the population proportion by greater than 4% can be calculated as:

[tex]P(|p-P|>0.04)=1 -P(p-P|<0.04)[/tex]

[tex]P(|p-P|>0.04)=1 -P(-0.04 \leq p-P \leq 0.04)[/tex]

[tex]P(|p-P|>0.04)=1 -P( \dfrac{-0.04}{\sigma_p} \leq \dfrac{ p-P}{\sigma_p} \leq \dfrac{0.04}{\sigma_p})[/tex]

[tex]P(|p-P|>0.04)=1 -P( \dfrac{-0.04}{0.014} \leq Z\leq \dfrac{0.04}{0.014})[/tex]

[tex]P(|p-P|>0.04)=1 -P( -2.8571 \leq Z\leq 2.8571)[/tex]

[tex]P(|p-P|>0.04)=1 -[P(Z \leq 2.8571) -P (Z\leq -2.8571)[/tex]

[tex]P(|p-P|>0.04)=1 -(0.9979 -0.0021)[/tex]

[tex]P(|p-P|>0.04)=1 -0.9958[/tex]

[tex]\mathbf{P(|p-P|>0.04)=0.0042}[/tex]

the probability that the proportion of flops in a sample of 442 released films would differ from the population proportion by greater than 4%  is 0.0042

Other Questions