Answer :
Answer:
the guarantee period should be less than 136010 miles
Step-by-step explanation:
From the given information;
Let consider Y to be the life of a car engine
with a mean μ = 170000
and a standard deviation σ = 16500
The objective is to determine what should be the guarantee period T if the company wants less than 2% of the engines to fail.
i.e
P(Y < T ) < 0.02
For the variable of z ; we have:
[tex]z = \dfrac{x - \mu }{\sigma}[/tex]
[tex]z = \dfrac{x - 170000 }{16500}[/tex]
Now;
[tex]P(Y < T ) = P( Z < \dfrac{T- 170000}{16500})[/tex]
[tex]P( Z < \dfrac{T- 170000}{16500})< 0.02[/tex]
From Z table ;
At P(Z < -2.06) ≅ 0.0197 which is close to 0.02
[tex]\dfrac{T- 170000}{16500}<- 2.06[/tex]
[tex]{T- 170000}<- 2.06({16500})[/tex]
[tex]{T- 170000}< - 33990[/tex]
[tex]{T}< - 33990+ 170000[/tex]
[tex]{T}<136010[/tex]
Thus; the guarantee period should be less than 136010 miles