Answered

Please HELP best answer will receive a BRAINLIEST. Given the probability density function f ( x ) = 1/3 over the interval [ 4 , 7 ] , find the expected value, the mean, the variance and the standard deviation.

Answer :

Answer:

Step-by-step explanation:

Assume that f(x) = 0 for x outside the interval [4,7]. We will use the following

[tex]E[X^k] = \int_{4}^{7}x^k f(x) dx[/tex]

[tex]Var(X) = E[X^2]- (E[X])^2[/tex]

Standard deviation = [tex] \sqrt[]{Var(X)}[/tex]

Mean = [tex]E[X][/tex]

Then,

[tex]E[X] = \int_{4}^{7}\frac{1}{3}dx = \frac{7^2-4^2}{2\cdot 3} = \frac{11}{2}[/tex]

[tex]E[X^2] = \int_{4}^{7}\frac{x^2}{3}dx = \frac{7^3-4^3}{3\cdot 3} = 31[/tex]

Then, [tex]Var(x) = 31-(\frac{11}{2})^2 = \frac{3}{4}[/tex]

Then the standard deviation is [tex]\frac{\sqrt[]{3}}{2}[/tex]

Other Questions