Answer :
Answer:
A) [tex]4x^5-4x^4-16x^2+16x[/tex]
B) [tex]4x^4-4x^3-16x^2+16x[/tex]
Also, maybe that vertically means:
A) [tex]4x^2 \cdot x^3[/tex] and [tex](-4x) \cdot (-4)[/tex]
Resulting in [tex]4x^5+16x[/tex]
B) [tex]x^2 \cdot 4x^2[/tex] and [tex]x \cdot (-8x)[/tex] and [tex]-2 \cdot 0[/tex]
Resulting in [tex]4x^4-8x^2[/tex]
Step-by-step explanation:
It seems that you want to multiply the polynomials in this way: [tex](\text{Polynomial - 1})\cdot(\text{Polynomial - 2})[/tex]
A)
[tex]4x^2-4x[/tex]
[tex]x \cdot x^2 -4[/tex]
[tex](4x^2-4x)(x \cdot x^2 -4)=(4x^2-4x)(x^3 -4)[/tex]
[tex](4x^2-4x)(x^3 -4)\\[/tex]
[tex]4x^5-16x^2-4x^4+16x[/tex]
[tex]4x^5-4x^4-16x^2+16x[/tex]
B)
[tex]x^2+x-2[/tex]
[tex]4x^2-8x[/tex]
[tex](x^2+x-2)(4x^2-8x)[/tex]
[tex]4x^4-8x^3+4x^3-8x^2-8x^2+16x[/tex]
[tex]4x^4-4x^3-16x^2+16x[/tex]