Answer :
Answer:
It'll take a bucket loads of [tex]7 * 10^{20}[/tex] to empty world's ocean
Step-by-step explanation:
Given
[tex]World\ Ocean: 1.4 * 10^9 km^3[/tex]
[tex]Bucket: 20,000 cm^3[/tex]
[tex]1 km^3 = 10^{15} cm^3[/tex]
To get the number of bucket loads, we simply divide the size of the ocean by the size of the bucket;
[tex]Number = \frac{Ocean\ Size}{Bucket\ Size}[/tex]
[tex]Number = \frac{1.4 * 10^9 km^3}{20,000cm^3}[/tex]
Expand the numerator
[tex]Number = \frac{1.4 * 10^9 * 1km^3}{20,000cm^3}[/tex]
Recall that [tex]1 km^3 = 10^{15} cm^3[/tex]
So, the expression becomes
[tex]Number = \frac{1.4 * 10^9 * 10^{15} cm^3}{20,000cm^3}[/tex]
Simplify the numerator using laws of indices
[tex]Number = \frac{1.4 * 10^{9+15} cm^3}{20,000cm^3}[/tex]
[tex]Number = \frac{1.4 * 10^{25} cm^3}{20,000cm^3}[/tex]
Expand the denominator
[tex]Number = \frac{1.4 * 10^{25} cm^3}{2 * 10,000cm^3}[/tex]
[tex]Number = \frac{1.4 * 10^{25} cm^3}{2 * 10^4\ cm^3}[/tex]
Split fraction
[tex]Number = \frac{1.4}{2} * \frac{10^{25} cm^3}{10^4\ cm^3}[/tex]
[tex]Number = 0.7 * \frac{10^{25}}{10^4\ }[/tex]
Simplify fraction using laws of indices
[tex]Number = 0.7 * 10^{25-4}[/tex]
[tex]Number = 0.7 * 10^{21}[/tex]
[tex]Number = 7 * 10^{20}[/tex]
Hence, it'll take a bucket loads of [tex]7 * 10^{20}[/tex] to empty world's ocean