Answer :
Answer: Theoretical yield is 313.6 g and the percent yield is, 91.8%
Explanation:
To calculate the moles :
[tex]\text{Moles of solute}=\frac{\text{given mass}}{\text{Molar Mass}}[/tex]
[tex]\text{Moles of} Fe_2O_3=\frac{450}{160}=2.8moles[/tex]
[tex]\text{Moles of} CO=\frac{260}{28}=9.3moles[/tex]
[tex]Fe_2O_3(s)+3CO(g)\rightarrow 2Fe(l)+3CO_2(g)[/tex]
According to stoichiometry :
1 mole of [tex]Fe_2O_3[/tex] require 3 moles of [tex]CO[/tex]
Thus 2.8 moles of [tex]Fe_2O_3[/tex] will require=[tex]\frac{3}{1}\times 2.8=8.4moles[/tex] of [tex]CO[/tex]
Thus [tex]Fe_2O_3[/tex] is the limiting reagent as it limits the formation of product and [tex]CO[/tex] is the excess reagent.
As 1 mole of [tex]Fe_2O_3[/tex] give = 2 moles of [tex]Fe[/tex]
Thus 2.8 moles of [tex]Fe_2O_3[/tex] give =[tex]\frac{2}{1}\times 2.8=5.6moles[/tex] of [tex]Fe[/tex]
Mass of [tex]Fe=moles\times {\text {Molar mass}}=2.6moles\times 56g/mol=313.6g[/tex]
Theoretical yield of liquid iron = 313.6 g
Experimental yield = 288 g
Now we have to calculate the percent yield
[tex]\%\text{ yield}=\frac{\text{Actual yield }}{\text{Theoretical yield}}\times 100=\frac{288g}{313.6g}\times 100=91.8\%[/tex]
Therefore, the percent yield is, 91.8%