Fe2O3(s) + 3CO(g) ---> 2Fe(l) + 3CO2(g) Steve inserts 450. g of iron(III) oxide and 260. g of carbon monoxide into the blast furnace. After cooling the pure liquid iron, Steve determines that he has produced 288g of iron ingots. Use the theoretical yield of liquid iron and the mass or iron ingots to calculate the percent yield of the reaction.

Answer :

Answer: Theoretical yield is 313.6 g and the percent yield is, 91.8%

Explanation:

To calculate the moles :

[tex]\text{Moles of solute}=\frac{\text{given mass}}{\text{Molar Mass}}[/tex]    

[tex]\text{Moles of} Fe_2O_3=\frac{450}{160}=2.8moles[/tex]

[tex]\text{Moles of} CO=\frac{260}{28}=9.3moles[/tex]

[tex]Fe_2O_3(s)+3CO(g)\rightarrow 2Fe(l)+3CO_2(g)[/tex]

According to stoichiometry :

1 mole of [tex]Fe_2O_3[/tex] require 3 moles of [tex]CO[/tex]

Thus 2.8 moles of [tex]Fe_2O_3[/tex] will require=[tex]\frac{3}{1}\times 2.8=8.4moles[/tex]  of [tex]CO[/tex]

Thus [tex]Fe_2O_3[/tex] is the limiting reagent as it limits the formation of product and [tex]CO[/tex] is the excess reagent.

As 1 mole of [tex]Fe_2O_3[/tex] give = 2 moles of [tex]Fe[/tex]

Thus 2.8 moles of [tex]Fe_2O_3[/tex] give =[tex]\frac{2}{1}\times 2.8=5.6moles[/tex] of [tex]Fe[/tex]

Mass of [tex]Fe=moles\times {\text {Molar mass}}=2.6moles\times 56g/mol=313.6g[/tex]

Theoretical yield of liquid iron = 313.6 g

Experimental yield = 288 g

Now we have to calculate the percent yield

[tex]\%\text{ yield}=\frac{\text{Actual yield }}{\text{Theoretical yield}}\times 100=\frac{288g}{313.6g}\times 100=91.8\%[/tex]

Therefore, the percent yield is, 91.8%

Other Questions