Answer :

Answer:

C

Step-by-step explanation:

Use the sine ratio in the left, right triangle to find the common side to both triangles and the exact values

sin60° = [tex]\frac{\sqrt{3} }{2}[/tex] , cos45° = [tex]\frac{1}{\sqrt{2} }[/tex] , thus

sin60° = [tex]\frac{opposite}{hypotenuse}[/tex] = [tex]\frac{opp}{7\sqrt{3} }[/tex] = [tex]\frac{\sqrt{3} }{2}[/tex] ( cross- multiply )

2 × opp = 21 ( divide both sides by 2 )

opp = [tex]\frac{21}{2}[/tex]

Now consider the right triangle on the right, using the cosine ratio

cos45° = [tex]\frac{adjacent}{hypotenuse}[/tex] = [tex]\frac{\frac{21}{2} }{x}[/tex] = [tex]\frac{1}{\sqrt{2} }[/tex] ( cross- multiply )

x = [tex]\frac{21}{2}[/tex] × [tex]\sqrt{2}[/tex] = [tex]\frac{21\sqrt{2} }{2}[/tex] → C