a diagonal of rectangle forms a 30 degree angle with each of the longer sides of the rectangle. if the length of the shorter side is 3, what is the length of the diagonal

Answer :

isyllus

Answer:

Length of diagonal = 6

Step-by-step explanation:

Given that

Diagonal of a rectangle makes an angle of [tex]30^\circ[/tex] with the longer side.

Kindly refer to the attached diagram of the rectangle ABCD such that diagonal BD makes angles of [tex]30^\circ[/tex] with the longer side CD and BA.

[tex]\angle CDB =\angle DBA =30^\circ[/tex]

Side AD = BC = 3 units

To find:

Length of diagonal BD = ?

Solution:

We can use the trigonometric ratio to find the diagonal in the [tex]\triangle BCD[/tex] because [tex]\angle C =90^\circ[/tex]

Using the sine :

[tex]sin\theta = \dfrac{Perpendicular }{Hypotenuse }[/tex]

[tex]sin\angle CDB = \dfrac{BC}{BD}\\\Rightarrow sin30^\circ = \dfrac{3}{BD}\\\Rightarrow \dfrac{1}2 = \dfrac{3}{BD}\\\Rightarrow BD =2 \times 3 \\\Rightarrow BD = \bold{6 }[/tex]

So, the answer is:

Length of diagonal = 6

${teks-lihat-gambar} isyllus

Other Questions