Answer :

tramserran

Answer:  see proof below

Step-by-step explanation:

Proof LHS → RHS

[tex]\dfrac{1}{3-2\sqrt2}-\dfrac{1}{2\sqrt2-7}+\dfrac{1}{\sqrt7-\sqrt6}-\dfrac{1}{\sqrt6-\sqrt5}+\dfrac{1}{\sqrt5-2}\\\\\\\text{Rationalize the denominator (multiply by same numbers but opposite sign)}\\\dfrac{3+2\sqrt2}{1}-\dfrac{2\sqrt2+7}{1}+\dfrac{\sqrt7+\sqrt6}{1}+\dfrac{\sqrt6+\sqrt5}{1}+\dfrac{\sqrt5+2}{1}\\\\\\\text{Group like terms:}\\3+(2\sqrt2-2\sqrt2)+(-\sqrt7+\sqrt7)+(\sqrt6-\sqrt6)+(-\sqrt5+\sqrt5)+2\\\\\\\text{Simplify:}\\3 + 0+0+0+0+2 \\= 5[/tex]

LHS = RHS:  5 = 5  [tex]\checkmark[/tex]

Other Questions