Answer :
Answer:
[tex]\bold{2\cdot10^9}[/tex]
Step-by-step explanation:
The given expression s are:
[tex]8 \cdot 10^4[/tex] and
[tex]4\cdot10^{-5}[/tex]
To find:
[tex]8 \cdot 10^4[/tex] is how many times as large as [tex]4\cdot10^{-5}[/tex].
Solution:
Let [tex]8 \cdot 10^4[/tex] is [tex]x[/tex] times as large as [tex]4\cdot10^{-5}[/tex].
So, we can say that:
[tex]8 \cdot 10^4[/tex] = [tex]4\cdot10^{-5}[/tex][tex]\times[/tex] [tex]x[/tex]
OR
[tex]x= \dfrac{8\cdot 10^4}{4\cdot 10^{-5}}[/tex]
Let us have a look at the formula for exponents:
[tex]\dfrac{x^p}{x^q} = x^{p-q}[/tex]
Here we have:
[tex]x=10\\p=4\ and\\q=-5[/tex]
Solving the expression using above formula:
[tex]\Rightarrow x= \dfrac{8}{4}\cdot 10^{4-(-5)}} = \bold{2\cdot10^9}[/tex]
So, Let [tex]8 \cdot 10^4[/tex] is [tex]\bold{2\cdot10^9}[/tex] times as large as [tex]4\cdot10^{-5}[/tex]