8 \cdot 10^48⋅10 4 8, dot, 10, start superscript, 4, end superscript is how many times as large as 4\cdot10^{-5}4⋅10 −5 4, dot, 10, start superscript, minus, 5, end superscript?

Answer :

isyllus

Answer:

[tex]\bold{2\cdot10^9}[/tex]

Step-by-step explanation:

The given expression s are:

[tex]8 \cdot 10^4[/tex] and

[tex]4\cdot10^{-5}[/tex]

To find:

[tex]8 \cdot 10^4[/tex] is how many times  as large as [tex]4\cdot10^{-5}[/tex].

Solution:

Let [tex]8 \cdot 10^4[/tex] is [tex]x[/tex] times as large as [tex]4\cdot10^{-5}[/tex].

So, we can say that:

[tex]8 \cdot 10^4[/tex]  = [tex]4\cdot10^{-5}[/tex][tex]\times[/tex] [tex]x[/tex]

OR

[tex]x= \dfrac{8\cdot 10^4}{4\cdot 10^{-5}}[/tex]

Let us have a look at the formula for exponents:

[tex]\dfrac{x^p}{x^q} = x^{p-q}[/tex]

Here we have:

[tex]x=10\\p=4\ and\\q=-5[/tex]

Solving the expression using above formula:

[tex]\Rightarrow x= \dfrac{8}{4}\cdot 10^{4-(-5)}} = \bold{2\cdot10^9}[/tex]

So, Let [tex]8 \cdot 10^4[/tex] is [tex]\bold{2\cdot10^9}[/tex] times as large as [tex]4\cdot10^{-5}[/tex]

Answer: 5 is your answer!

Step-by-step explanation:

${teks-lihat-gambar} JiminandTaemybias

Other Questions