Answer :

Answer:

see explanation

Step-by-step explanation:

Using the sum/ difference → product formula

cos x - cos y = - 2sin( [tex]\frac{x+y}{2}[/tex])sin ([tex]\frac{x-y}{2}[/tex] )

sin x - sin y = 2cos ([tex]\frac{x+y}{2}[/tex] )sin ([tex]\frac{x-y}{2}[/tex] )

Given

(cosA - cosB)² + (sinA - sinB )²

= [ - 2sin([tex]\frac{A+B}{2}[/tex])sin([tex]\frac{A-B}{2}[/tex] ) ]² + [ 2cos([tex]\frac{A+B}{2}[/tex] )sin([tex]\frac{A-B}{2}[/tex] ) ]²

= 4sin² ([tex]\frac{A+B}{2}[/tex] )sin² ([tex]\frac{A-B}{2}[/tex] ) + 4cos² ([tex]\frac{A+B}{2}[/tex] )sin² ( [tex]\frac{A-B}{2}[/tex] )

= 4sin² ([tex]\frac{A-B}{2}[/tex] )[ sin² ( [tex]\frac{A+B}{2}[/tex] ) + cos² ( [tex]\frac{A+B}{2}[/tex] ) ← sin²x + cos²x = 1

= 4sin² ( [tex]\frac{A-B}{2}[/tex] ) × 1

= 4sin² ( [tex]\frac{A-B}{2}[/tex] ) = right side ⇒ proven

Other Questions