Answer :

JcAlmighty
The answer is [tex] \frac{1}{12} [/tex]

The simplified form of the expression √1/144 is:
[tex] \sqrt{ \frac{1}{144} } = \frac{ \sqrt{1} }{ \sqrt{144} } = \frac{ \sqrt{ 1^{2}}}{ \sqrt{ 12^{2} } } = \frac{1^{ \frac{2}{2} } }{ 12^{ \frac{2}{2} } } = \frac{ 1^{1} }{12^{1}} = \frac{1}{12} [/tex]

Answer:

[tex]\sqrt{\frac{1}{144}}=\frac{1}{12}[/tex]  which is the simplified form

Step-by-step explanation:

We have been given the expression:

[tex]\sqrt{\frac{1}{144}}[/tex]

We have to find its simplified form means the maximum solved form of the given expression

As we know:

[tex]12^2=144[/tex]

means[tex]\sqrt{144}=12[/tex]

using:

[tex]a^2=b[/tex]

[tex]\Rightarrow a=\sqrt{b}[/tex]

Here, a=144 and b=12

Hence, the simplified expression of the given expression is:

[tex]\sqrt{\frac{1}{144}}=\frac{1}{12}[/tex]

Other Questions