Answer :
The answer is [tex] \frac{1}{12} [/tex]
The simplified form of the expression √1/144 is:
[tex] \sqrt{ \frac{1}{144} } = \frac{ \sqrt{1} }{ \sqrt{144} } = \frac{ \sqrt{ 1^{2}}}{ \sqrt{ 12^{2} } } = \frac{1^{ \frac{2}{2} } }{ 12^{ \frac{2}{2} } } = \frac{ 1^{1} }{12^{1}} = \frac{1}{12} [/tex]
The simplified form of the expression √1/144 is:
[tex] \sqrt{ \frac{1}{144} } = \frac{ \sqrt{1} }{ \sqrt{144} } = \frac{ \sqrt{ 1^{2}}}{ \sqrt{ 12^{2} } } = \frac{1^{ \frac{2}{2} } }{ 12^{ \frac{2}{2} } } = \frac{ 1^{1} }{12^{1}} = \frac{1}{12} [/tex]
Answer:
[tex]\sqrt{\frac{1}{144}}=\frac{1}{12}[/tex] which is the simplified form
Step-by-step explanation:
We have been given the expression:
[tex]\sqrt{\frac{1}{144}}[/tex]
We have to find its simplified form means the maximum solved form of the given expression
As we know:
[tex]12^2=144[/tex]
means[tex]\sqrt{144}=12[/tex]
using:
[tex]a^2=b[/tex]
[tex]\Rightarrow a=\sqrt{b}[/tex]
Here, a=144 and b=12
Hence, the simplified expression of the given expression is:
[tex]\sqrt{\frac{1}{144}}=\frac{1}{12}[/tex]