Parallelogram JKLM has vertices J(-1, 6), K(0, 9), L(6, −3), and M(3, −3). What is the coordinates of the image if the parallelogram is dilated with a scale factor of -1/3

Answer :

JeanaShupp

Answer: [tex](\dfrac13,-2),\ (0,-3),\ (-2,1),\ (-1,1) .[/tex]

Step-by-step explanation:

Transformation rule for dilation:

[tex](x,y)\to(kx,ky)[/tex] , where k = scale factor

Given : Scale factor = [tex]-\dfrac13[/tex]

Parallelogram JKLM has vertices J(-1, 6), K(0, 9), L(6, −3), and M(3, −3)

Vertices after dilation:

[tex](-1,6)\to(-1\times\dfrac{-1}{3},6\times\dfrac{-1}{3})=(\dfrac13,-2)[/tex]

[tex](0,9)\times(0\times-\dfrac13,9\times-\dfrac13)=(0,-3)[/tex]

[tex](6,-3)\to(6\times-\dfrac13,\ -3\times-\dfrac13)=(-2,1)[/tex]

[tex](3,-3)\to (3\times-\dfrac13,\ -3\times-\dfrac13)=(-1,1)[/tex]

Hence, the coordinates of the image if the parallelogram = [tex](\dfrac13,-2),\ (0,-3),\ (-2,1),\ (-1,1) .[/tex]

Other Questions