Answer :

Answer:

[tex]\frac{4a-2}{2a+1}[/tex]

Step-by-step explanation:

Factorise the numerator and denominator

8a² - 2 ← factor out 2 from each term

= 2(4a² - 1) ← 4a² - 1 is a difference of squares

= 2(2a - 1)(2a + 1)

4a² + 4a + 1 ← is a perfect square

= (2a + 1)²

Thus

[tex]\frac{8a^2-2}{4a^2+4a+1}[/tex]

= [tex]\frac{2(2a-1)(2a+1)}{(2a+1)(2a+1)}[/tex] ← cancel (2a + 1) on numerator/ denominator

= [tex]\frac{2(2a-1)}{2a+1}[/tex]

= [tex]\frac{4a-2}{2a+1}[/tex]

Answer: 4a-2/2a+1
Explanation: first factor out the expression. Second cancel out
${teks-lihat-gambar} beee79

Other Questions