What is the most highly populated rotational level of Cl2 (i) 25deg C and (ii) 100 deg C? Take B=0.244cm-1.This question should not be resubmitted, it is a textbook question from the Atkins physical chemistry txtbook. 10 e.

Answer :

Answer:

i

[tex]J_{m} = 20 [/tex]

ii

[tex]J_{m} = 22.5 [/tex]

Explanation:

From the question we are told that

  The first temperatures is [tex]T_1 =  25^oC =  25 +273 =298 \ K[/tex]

   The second temperature is  [tex]T_2 =  100^oC =  100 +273 = 373 \ K[/tex]

Generally the equation for  the most highly populated rotational energy level is mathematically represented as

     [tex]J_{m} = [ \frac{RT}{2B}]  ^{\frac{1}{2} } - \frac{1}{2}[/tex]

Here R is the gas constant with value [tex]R =8.314 \ J\cdot K^{-1} \cdot mol^{-1}[/tex]

Also  

      B is given as [tex]B=\ 0.244 \ cm^{-1}[/tex]

   Generally the energy require per mole to move 1 cm is  12 J /mole

So   [tex]0.244 \ cm^{-1}[/tex]  will require x J/mole

           [tex]x =  0.244 *  12[/tex]

=>          [tex]x =  2.928 \ J/mol [/tex]

So at the first temperature

     [tex]J_{m} = [ \frac{8.314 * 298  }{2*  2.928 }]  ^{\frac{1}{2} } - 0.5 [/tex]

=>  [tex]J_{m} = 20 [/tex]

So at the second temperature

           [tex]J_{m} = [ \frac{8.314 * 373  }{2*  2.928 }]  ^{\frac{1}{2} } - 0.5 [/tex]

=>  [tex]J_{m} = 22.5 [/tex]

Other Questions