Find all relative extrema and classify each as a maximum or minimum. Use the second-derivative test where possible. f(x) = 125x 3 − 15x + 8

Answer :

xero099

Answer:

The following classification is found:

[tex](0.2, 6)[/tex] - Absolute minimum

[tex](-0.2, 10)[/tex] - Absolute maximum

Step-by-step explanation:

Let be [tex]f(x) = 125\cdot x^{3}-15\cdot x + 8[/tex], we need to find first and second derivatives of this expression at first:

First derivative

[tex]f'(x) = 375\cdot x^{2}-15[/tex] (Eq. 1)

Second derivative

[tex]f''(x) = 750\cdot x[/tex] (Eq. 2)

Critical points are points that equals first derivative to zero and that may be maxima or minima. That is:

[tex]375\cdot x^{2} -15 = 0[/tex]

[tex]x = \pm \sqrt{\frac{15}{375} }[/tex]

Which leads to the following critical points:

[tex]x_{1}\approx 0.2[/tex] and [tex]x_{2} \approx -0.2[/tex]

Now we evaluate each result in second derivative expression:

[tex]f''(x_{1}) = 750\cdot (0.2)[/tex]

[tex]f''(x_{1})=150[/tex] (Absolute minimum)

[tex]f''(x_{2})= 750\cdot (-0.2)[/tex]

[tex]f''(x_{2}) = -150[/tex] (Absolute maximum)

Lastly we evaluate the function at each critical point:

[tex]f(x_{1})= 125\cdot (0.2)^{3}-15\cdot (0.2)+8[/tex]

[tex]f(x_{1})= 6[/tex]

[tex]f(x_{2})= 125\cdot (-0.2)^{3}-15\cdot (-0.2)+8[/tex]

[tex]f(x_{2}) = 10[/tex]

And the following classification is found:

[tex](0.2, 6)[/tex] - Absolute minimum

[tex](-0.2, 10)[/tex] - Absolute maximum

Other Questions