Answer :

elcharly64

Answer:

[tex]\displaystyle \frac{\sqrt{2}}{x^2}[/tex]

Step-by-step explanation:

Dividing Radicals

Given the division of radicals:

[tex]\displaystyle \frac{\sqrt{Z}}{\sqrt{Y}}[/tex]

We can join both arguments of the radicals into one simple radical as follows:

[tex]\displaystyle \sqrt{\frac{Z}{Y}}[/tex]

We are given the expression:

[tex]\displaystyle 2\frac{\sqrt{24}}{\sqrt{48x^4}}[/tex]

Joining them in a single radical:

[tex]\displaystyle 2\frac{\sqrt{24}}{\sqrt{48x^4}}=2\sqrt{\frac{24}{48x^4}}[/tex]

Simplifying the fraction:

[tex]\displaystyle 2\sqrt{\frac{24}{48x^4}}=2\sqrt{\frac{1}{2x^4}}[/tex]

Multiplying by 2 in numerator and denominator:

[tex]\displaystyle 2\sqrt{\frac{1}{2x^4}}=2\sqrt{\frac{2}{4x^4}}[/tex]

The denominator is a perfect square:

[tex]\displaystyle 2\sqrt{\frac{2}{4x^4}}=2\frac{\sqrt{2}}{2x^2}[/tex]

Simplifying by 2:

[tex]\boxed{\displaystyle \frac{\sqrt{2}}{x^2}}[/tex]

Other Questions