Answer :
Answer:
Option B is correct
Step-by-step explanation:
Given: [tex]h(x)=\frac{1}{x^2+1}[/tex] is the result of the composition [tex]f(g(x))[/tex].
Also, [tex]g(x)=x^2+1[/tex]
To find: [tex]f(x)[/tex]
Solution:
Take [tex]f(x)=\frac{1}{x}[/tex]
Now check whether [tex]h(x)[/tex] is equal to [tex]f(g(x))[/tex] or not.
First find [tex]f(g(x))[/tex]
[tex]f(g(x))=f(x^2+1)=\frac{1}{x^2+1}[/tex]
Also, [tex]h(x)=\frac{1}{x^2+1}[/tex]
Therefore,
[tex]h(x)=f(g(x))[/tex]
So,
Option B is correct