Answered

The function h(x)=1/x^2+1 is the result of the composition f(g(x)). If g(x) = x^2+1,what is f(x)? A f(x)=1/square root x B f(x)=1/x C f(x)= 1/x+1 D f(x)=1/x^2+1

Answer :

Answer:

Option B is correct

Step-by-step explanation:

Given: [tex]h(x)=\frac{1}{x^2+1}[/tex] is the result of the composition [tex]f(g(x))[/tex].

Also, [tex]g(x)=x^2+1[/tex]

To find: [tex]f(x)[/tex]

Solution:

Take [tex]f(x)=\frac{1}{x}[/tex]

Now check whether [tex]h(x)[/tex] is equal to [tex]f(g(x))[/tex] or not.

First find [tex]f(g(x))[/tex]

[tex]f(g(x))=f(x^2+1)=\frac{1}{x^2+1}[/tex]

Also, [tex]h(x)=\frac{1}{x^2+1}[/tex]

Therefore,

[tex]h(x)=f(g(x))[/tex]

So,

Option B is correct

kyliej7

Answer: B. f(x)=1/x

Step-by-step explanation:

Edge

Other Questions